

Enseignants: Dovi, Huruguen, Maatouk

Géométrie analytique - CMS

11 novembre 2022 Durée : 105 minutes 1

Corrigé

SCIPER: XXXXXX

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 16 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant.e sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à **choix unique**, on comptera:
 - les points indiqués si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - 0 point si la réponse est incorrecte.
- Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du correcteur blanc si nécessaire.
- Les dessins peuvent être faits au crayon.
- Répondez dans l'espace prévu (aucune feuille supplémentaire ne sera fournie).
- Les brouillons ne sont pas à rendre: ils ne seront pas corrigés.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien		
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte		

Première partie, questions à choix unique

Pour chaque énoncé proposé, plusieurs questions sont posées. Pour chaque question, marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Enoncé

Dans le plan muni d'un repère orthonormé $(O, \vec{i}, \vec{j}),$ on donne :

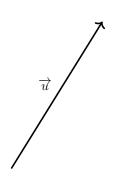
$$A(\frac{3}{2},-1), \quad \vec{u} \begin{pmatrix} -8\\-4 \end{pmatrix}, \quad \vec{n} \begin{pmatrix} 1\\-2 \end{pmatrix}$$

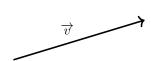
ainsi que :

$$d_1:\overrightarrow{OM}=\overrightarrow{OA}+t\overrightarrow{u}\,,\,t\in\mathbb{R}\,,\quad d_2:2x-4y=7\,,\quad d_3:\overrightarrow{OM}\cdot\overrightarrow{n}=\overrightarrow{OA}\cdot\overrightarrow{n}\,,\quad d_4:\left\{\begin{array}{ll}x=\frac{1}{2}-t\\y=1+2t\end{array}\right.,\,t\in\mathbb{R}.$$

Question 1	(1 point) Comment les droites d_2 et d_4 sont-elles?
parallèles	
autres	
perpendic	rulaires
confondue	es
Question 2	(2 points) Quelle est l'intersection entre les droites d_1 et d_4 ?
☐ le point d	e coordonnées $(3, -2)$
le point A	L'
le point d	e coordonnées (1,0)
toute la d	roite d_1
Question 3	$(2\ points)$ Parmi d_1,d_2,d_3 et $d_4,$ combien y a-t-il de droites différentes ?
3	
1	
2	

On donne les trois vecteurs ci-dessous dans le plan. Vous pouvez écrire sur le dessin.





Question 4 (2 points) Parmi les inégalités suivantes, laquelle est satisfaite?

- $\overrightarrow{v} \cdot \overrightarrow{w} > \overrightarrow{u} \cdot \overrightarrow{w}$
- $\overrightarrow{w} \cdot \overrightarrow{u} > \overrightarrow{v} \cdot \overrightarrow{u}$

Question 5 (2 points) Dans la décomposition $\overrightarrow{u} = \alpha \overrightarrow{v} + \beta \overrightarrow{w}$, on a ...

- $\alpha < -2$
- $\beta > 1$
- $\beta < -2$
- $\alpha > 1$

Question 6 (2 points) Parmi les vecteurs ci-dessous, lequel est le plus court ?

- $\square \overrightarrow{u}$
- \overrightarrow{w}
- $\square \overrightarrow{u} + \overrightarrow{w}$

Répondre dans l'espace dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher: elles sont réservées au correcteur.

Question 7: Cette question est notée sur 6 points.

Dans le rectangle ABCD représenté ci-dessous, on a :

$$\|\overrightarrow{AB}\| = 3$$
 et $\|\overrightarrow{AD}\| = 2$.

On note I le point tel que $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AD}$ et d la droite décrite par :

$$d: \overrightarrow{DM} \cdot \overrightarrow{AC} = 18.$$

- (a) Tracer la droite d sur le dessin ci-dessous en justifiant algébriquement votre construction.
- (b) Déterminer une équation vectorielle de la droite:

$$g = (BI)$$

vue depuis le point D en fonction uniquement des vecteurs \overrightarrow{DA} et $\overrightarrow{DC}.$

(c) On note J le point d'intersection de d et g. Exprimer \overrightarrow{DJ} en fonction de \overrightarrow{DA} et \overrightarrow{DC} .

Solution

(a)
$$\overrightarrow{DA} \cdot \overrightarrow{AC} = \overrightarrow{DA} \cdot \overrightarrow{AB} + \overrightarrow{DA} \cdot \overrightarrow{AD} = -4$$

$$\overrightarrow{DB} \cdot \overrightarrow{AC} = (\overrightarrow{DA} + \overrightarrow{AB}) \cdot (\overrightarrow{DA} + \overrightarrow{AB}) = \overrightarrow{DA} \cdot \overrightarrow{AB} + \|\overrightarrow{AB}\|^2 - \|\overrightarrow{AD}\|^2 + \overrightarrow{AB} \cdot \overrightarrow{AD} = 9 - 4 = 5$$

$$\overrightarrow{DC} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot (\overrightarrow{AB} + \overrightarrow{AD} = \|\overrightarrow{AB}\|^2 + \overrightarrow{AB} \cdot \overrightarrow{AD} = 9$$

$$\overrightarrow{DD} \cdot \overrightarrow{AC} = 0$$

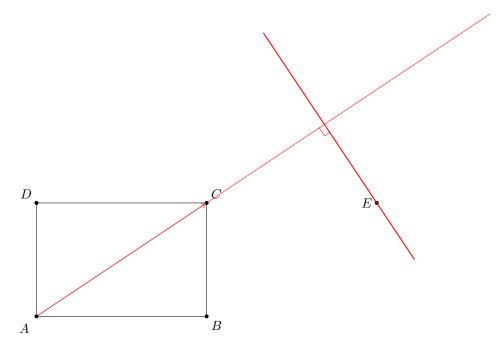
On a
$$d: \overrightarrow{DM} \cdot \overrightarrow{AC} = 18$$

et donc
$$2\overrightarrow{DC} \cdot \overrightarrow{AC} = 18$$

et par suite
$$(2\overrightarrow{DC}) \cdot \overrightarrow{AC} = 18$$

et
$$\overrightarrow{DE} \cdot \overrightarrow{AC} = 18$$
 où E est tel que $\overrightarrow{DE} = 2\overrightarrow{DC}$

La droite d est orthogonale à la droite (AC) et passe par le point E.



(b) Equation vectorielle de (BI) vue depuis le point D en fonction de \overrightarrow{DA} et \overrightarrow{DC} .

$$\overrightarrow{DM} = \overrightarrow{DB} + t\overrightarrow{BI}$$

or
$$\overrightarrow{DB} = \overrightarrow{DC} + \overrightarrow{DA}$$

et
$$\overrightarrow{BI} = \overrightarrow{BA} + \overrightarrow{AI} = \frac{1}{2}\overrightarrow{AD} - \overrightarrow{AB} = -\frac{1}{2}\overrightarrow{DA} - \overrightarrow{DC}$$

On a donc
$$g:\overrightarrow{DM}=\overrightarrow{DA}+\overrightarrow{DC}+\lambda(2\overrightarrow{DC}+\overrightarrow{DA})$$

(c) J vérifie le système suivant :

$$\begin{cases}
\overrightarrow{DJ} = \overrightarrow{DA} + \overrightarrow{DC} + \lambda(2\overrightarrow{DC} + \overrightarrow{DA}) & (1) \\
\overrightarrow{DJ} \cdot (\overrightarrow{DC} - \overrightarrow{DA}) = 18 & (2)
\end{cases}$$

En effet,
$$\overrightarrow{AC} = \overrightarrow{DC} - \overrightarrow{DA}$$

En mettant (1) dans (2):

$$(\overrightarrow{DC} + \overrightarrow{DA}) \cdot (\overrightarrow{DC} - \overrightarrow{DA}) + \lambda (\overrightarrow{DA} + 2\overrightarrow{DC}) \cdot (\overrightarrow{DC} - \overrightarrow{DA}) = 18$$

$$\|\overrightarrow{DC}\|^2 - \|\overrightarrow{DA}\|^2 + \lambda(\overrightarrow{DA} \cdot \overrightarrow{DC}) - \|\overrightarrow{DA}\|^2 + 2\|\overrightarrow{DC}\|^2 - 2\overrightarrow{DC} \cdot \overrightarrow{DA}) = 18$$

$$9 - 4 + \lambda(18 - 4) = 18$$

$$5 + 14\lambda = 18$$

$$14\lambda = 13$$

$$\begin{split} \lambda &= \frac{13}{14} \\ \overrightarrow{DJ} &= \overrightarrow{DA} + \overrightarrow{DC} + \frac{13}{14} (\overrightarrow{DA} + 2\overrightarrow{DC}) \\ &= \frac{7}{7} \overrightarrow{DC} + \frac{13}{7} \overrightarrow{DC} + \frac{14}{14} \overrightarrow{DA} + \frac{13}{14} \overrightarrow{DA} \\ &= \frac{27}{14} \overrightarrow{DA} + \frac{20}{7} \overrightarrow{DC} \end{split}$$

Question 8: Cette question est notée sur 7 points.

On donne les points $A,\,B,\,C$ et J ci-dessous, tels que :

$$\|\overrightarrow{AB}\| = 1$$
, $\|\overrightarrow{AC}\| = 2$, $\widehat{BAC} = \frac{2\pi}{3}$ et $\overrightarrow{CJ} = \frac{3}{2}\overrightarrow{AB}$.

Soit I le point de coordonnées $(\frac{1}{2},-1)$ dans le repère $\mathcal{R}=(A,\overrightarrow{AC},\overrightarrow{AB}).$

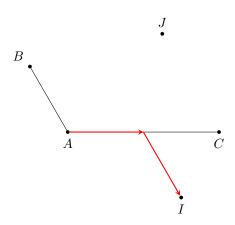
- (a) En faisant apparaı̂tre votre construction, placer I sur le dessin ci-dessous.
- (b) Quelles sont les coordonnées de I dans le repère $\mathcal{R}'=(B,\frac{1}{2}\overrightarrow{BC},\overrightarrow{BA})$?
- (c) Pour deux vecteurs \overrightarrow{u} et \overrightarrow{v} quelconques, donner l'expression du produit scalaire $\overrightarrow{u} \cdot \overrightarrow{v}$ dans le repère R en fonction des coordonnées de \overrightarrow{u} et de \overrightarrow{v} .
- (d) Représenter sur le dessin ci-dessous l'angle géométrique α entre les vecteurs \overrightarrow{AB} et \overrightarrow{IJ} . α est-il aigu ou obtus? Justifier algébriquement votre réponse.

J \bullet

B

 $\stackrel{\bullet}{A}$ $\stackrel{\bullet}{C}$

(a)



(b) Puisque I a pour coordonnées $(\frac{1}{2},-1)$ dans le repère $R=(A,\overrightarrow{AC},\overrightarrow{AB}),$ on a

$$\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AC} - \overrightarrow{AB}.$$

Donc

$$\overrightarrow{BI} = \overrightarrow{BA} + \overrightarrow{AI} = \overrightarrow{BA} + \frac{1}{2}\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BA} + \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{BC}) - \overrightarrow{AB} = \frac{1}{2}\overrightarrow{BC} + \frac{3}{2}\overrightarrow{BA}.$$

I a donc pour coordonnées $(1,\frac{3}{2})$ dans le repère R'.

(c) Soit $\overrightarrow{u}\begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v}\begin{pmatrix} x' \\ y' \end{pmatrix}$ dans le repère R. On a

$$\overrightarrow{u} \cdot \overrightarrow{v} = \left(x\overrightarrow{AC} + y\overrightarrow{AB} \right) \cdot \left(x'\overrightarrow{AC} + y'\overrightarrow{AB} \right)$$

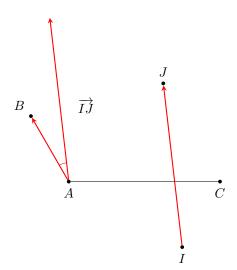
$$= xx' \|\overrightarrow{AC}\|^2 + yy' \|\overrightarrow{AB}\|^2 + (xy' + x'y)\overrightarrow{AC} \cdot \overrightarrow{AB}.$$

$$\text{Or } \|\overrightarrow{AC}\|^2 = 4, \, \|\overrightarrow{AB}\|^2 = 1, \, \text{et } \overrightarrow{AC} \cdot \overrightarrow{AB} = 1 \times 2 \times \cos(\tfrac{2\pi}{3}) = -1.$$

On a donc l'expression suivante du produit scalaire dans le repère R:

$$\overrightarrow{u} \cdot \overrightarrow{v} = 4xx' + yy' - (xy' + x'y).$$

(d)



On observe sur la figure que l'angle α entre \overrightarrow{AB} et \overrightarrow{IJ} est aigu. Pour le prouver, on calcule le signe de $\cos(\alpha)$, qui n'est autre que le signe de $\overrightarrow{AB} \cdot \overrightarrow{IJ}$ puisque

$$\cos(\alpha) = \frac{\overrightarrow{AB} \cdot \overrightarrow{IJ}}{\|\overrightarrow{AB}\| \|\overrightarrow{IJ}\|}.$$

Dans le repère R, on a A(0,0) et B(0,1), donc $\overrightarrow{AB}({0 \atop 1})$. De même, on a $I({1 \over 2},-1)$ et

$$\overrightarrow{AJ} = \overrightarrow{AC} + \overrightarrow{CJ} = \overrightarrow{AC} + \frac{3}{2}\overrightarrow{AB}$$

donc $J(1, \frac{3}{2})$ et $\overrightarrow{IJ}\left(\frac{1/2}{5/2}\right)$. Finalement, en utilisant l'expression pour le produit scalaire dans R obtenue au point précédent, on a

$$\overrightarrow{AB} \cdot \overrightarrow{IJ} = 0 + \frac{5}{2} - 0 - \frac{1}{2} > 0.$$

L'angle α est donc bien aigu.

Question 9: Cette question est notée sur 7 points.

Dans le plan muni d'un repère orthonormé direct, on donne les points:

$$A(3,-2), B(\alpha,\beta), C(\gamma,\delta)$$

où les réels $\alpha, \beta, \gamma, \delta$ sont à déterminer. Dans le triangle ABC, on sait que la hauteur issue de C est la droite:

$$d: 2x - y = 13$$

et que la médiane issue de A est parallèle à l'axe des abscisses.

- (a) Déterminer une équation cartésienne de la droite (AB). En déduire α en fonction de β .
- (b) Donner une équation cartésienne de la médiane issue de A. Exprimer γ et δ en fonction de β .
- (c) Le triangle ABC est orienté directement et d'aire 25. Sachant que β est positif déterminer sa valeur.

Solution

(a) La droite d est dirigée par le vecteur de coordonnées $(\frac{1}{2})$. Comme la droite (AB) est orthogonale à celui-ci, on voit qu'elle a pour équation (car le repère employé est orthonormé):

$$x + 2y = 3 + 2(-2) = -1.$$

Le point B se trouvant sur cette droite, on a la relation:

$$\alpha + 2\beta = -1 \quad \Rightarrow \quad \alpha = -1 - 2\beta.$$

(b) Appelons g la médiane issue de A. Comme elle est parallèle à l'axe des abscisses elle admet une équation du type y = cte. On trouve la constante en exprimant que g passe par A:

$$g: y = -2.$$

Le milieu de BC appartenant à g on obtient:

$$\frac{\beta+\delta}{2}=-2\quad\Rightarrow\quad\delta=-4-\beta.$$

Enfin, le point C se trouve sur la droite d, puisque cette dernière n'est autre que la hauteur issue de C. On en déduit:

$$2\gamma - \delta = 13$$
 \Rightarrow $\gamma = \frac{13 + \delta}{2}$ \Rightarrow $\gamma = \frac{9 - \beta}{2}$.

(c) D'après les réponses trouvées au (a) et au (b), on obtient:

$$\overrightarrow{AB} \begin{pmatrix} -4-2\beta \\ 2+\beta \end{pmatrix}$$
 et $\overrightarrow{AC} \begin{pmatrix} \frac{3-\beta}{2} \\ -2-\beta \end{pmatrix}$.

Le triangle ABC étant orienté et d'aire on obtient:

$$\underbrace{\frac{1}{2}\underbrace{\det\left(\frac{-4-2\beta}{2+\beta} \frac{\frac{3-\beta}{2}}{-2-\beta}\right)}_{>0}} = 25 \quad \Leftrightarrow \quad \underbrace{\frac{5}{2}\beta^2 + \frac{15}{2}\beta + 5}_{=50} = 50 \quad \Leftrightarrow \quad \underbrace{\beta^2 + 3\beta - 18}_{(\beta-3)(\beta+6)} = 0.$$

On voit donc que $\beta = 3$.